
WEAK COMPACTNESS AND REFLEXIVITY(1) 

BY 

ROBERT C. JAMES 

ABSTRACT 

Several characterizations of weak-compactness are given for subsets of 
complete locally convex linear topolegical spaces and of Banach spaces. 
Some are new and some are generalizations of known facts. 

Introduction. The purpose of this paper is to study characterizations of  
weak compactness of bounded sets in complete real locally convex linear topo- 
logical spaces and in real Banach spaces and to use these characterizations of  
weak compactness to obtain characterizations of reflexive Banach spaces. Some 
of the characterizations are new, many are improved or established for more 
general cases than previously, and some are known but are proved here both 
as useful steps in sequences of implications and to demonstrate relations to other 
characterizations. Only properties equivalent to w-compactness will be discussed. 
For bounded w-closed subsets E of a locally convex linear topological space, 
each of (1)-(17) is equivalent to w-compactness. If  E also is convex, we can in- 
clude (18)-(25) as well, and also (26) if E contains 0. For  bounded w-closed 
subsets of a Banach space, each of (1)-(17) and (27)-(28) is equivalent to w-com- 

pactness. Each of (1)-(38) is a necessary and sufficient condition for reflexivity 
of a Banach space, with E understood to be the unit ball. 

The symbols X + Y and X - Y will denote the sets of  all sums x + y and all 
differences x - y  with x in X and y in Y. The abbreviations "w-closed" and 
"w-compact"  will be used for weakly closed and weakly compact (i.e., closed 
and compact relative to the weak topology). Also, "we-compact"  will be used 
for weakly countably compact and "ws-compact" for weakly sequentially com- 
pact. Since all spaces used are T 1 (and in fact Hausdorff), countably compact 
can mean either that any countable open cover contains a finite cover or that 
each infinite subset has an accumulation point in the set. A weakly sequentially 

compact set is a set such that each sequence in the set contains a subsequence 

that converges weakly to a point in the set. The closure of a set E will be denoted 
by el(E) and the linear span of  a set E by lin(E). The convex span of  E will be 
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denoted by cony(E) and is the set of all finite sums ~,~ix~ with each ~l nonne- 
gative, ~ c~i = 1, and each xi in E. The circled span of E will be denoted by cir(E) 
and is the set of all finite sums ~,aix, with Ela, ] <= 1 and each x, in E. The 
fiat span of E will be denoted by fiat(E) and is the set of all finite sums ~aix~ 
with ~ai  = 1 and each x~ in E. Several applications will be made of the follow- 
ing elementary facts. 

THEOREM ON STRONG SEPARATION [12, Theorem 14.3, p. 118]. I f  T is a 
locally convex linear topological space and X and Y are nonempty disjoint 
convex subsets of T, then 0 is not a member of c l [ Y -  X] iff there is a continuous 
linear functional f such that 

sup{ f ( x ) : xEX}  < inf{f(y): y~ Y}. 

A useful special case of this theorem states that if K is a closed convex subset 
of T, then for any member x of T not in K there is a continuous linear functional 
f with f ( x )  > s u p { f ( y ) : y ~ K }  [2, Theorem 5, p. 22]. 

HELLY'S CONDITION (see [2, Theorem 3, p. 38], and [12, pp. 151-2]). I f  T is a 
normed linear space and f l, "",f~ are linear functionals on T, then for numbers 
cl, ..., cn and ~ > 0 there exists an x in T with II xll < M + 8 and fk(X) = C k for  

each k if f  

1 I 

for all numbers a~,...,a~. 

LEMMA. For any bounded sequence (x,} in a normed linear space T, there 
is an F in T** such that 

lim f(xn) < F( f )  <= lim f(x~) for all f in T*. 

Proof. Let # be a linear functional of unit norm on the space re(co) of bounded 
sequences with the property that 

lim tn = < #(t) = < lira t~ 

for all t = {tl, ...}. Then we can define F that satisfies the desired inequality by 
letting F( f )  = # ( ( f ( x l ) , ' " } )  for all f in T*. The functional # can be any linear 
functional of unit norm on m(og) with #(0 = lim tn whenever this limit exists, 
or p can be a Banach limit [2, Theorem 2, p. 83]. 

1. Bounded w-closed subsets o f  complete locally convex linear topological  spaces. 
Most of the conditions listed as (1)-(9) of Theorem 1 have been studied 

previously, but some only for less general cases. It has long been known that 
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a Banach space is reflexive iff (3) is satisfied for E the unit sphere and {x,} an 
arbitrary transfinite sequence in E [5], and iff (4) is satisfied for E the unit sphere 
(see [15] and [20]). However, the equivalence of (1) with each of (2), (3) and (4) 
is now well known (see [2, Corollary 2, p. 51], and [12, Theorem 17.12, p. 159]). 
Condition (6) is closely related to the well known condition (5) (see [6, pp. 177 
and 185], and [12, Theorem 17.12, p. 159]). Conditions of type (7) and (8) were 
developed first for the unit sphere of a Banach space [8, Lemma 1, p. 159] and 
later for bounded closed convex subsets of a Banach space [11, Theorems 1 and 
2, pp. 130-131]. Condition (9) was developed first for the unit sphere of a Banach 
space [9, Theorem 1, p. 206] and is closely related to the later concept of a cone 
isomorphic to the cone spanned by unit members of 1 a discussed in [16] as a 
condition for nonreflexivity of Banach spaces. Condition (9) has also been studied 
for bounded closed convex subsets of a Banach space [11, Theorem 3, p. 132]. 

THEOREM 1. Let T be a complete locally convex linear topological space 
and let E be a bounded w-closed subset of T. Then the following are equivalent: 

(1) E is w-compact. 
(2) E is we-compact. 
(3) For each sequence {x,,} in E there is an x in E such that, for all continuous 

linear functionals f ,  

lim f (x,)  < f(x)  < lim f (x , ) .  

(4) I f  {K,} is a nested sequence of closed convex sets and E f) K, is nonempty 
for each n, then E [3 (0 K,) is nonempty. 

(5) For each sequence {x,} in E and each equicontinuous sequence {fn} of 
linear functionals, 

lim lira f,(xk) = lim lim f,,(Xk) 
n k k n 

whenever all of these limits exist. 
(6) For each sequence {x.} in E and each equicontinuous sequence {f~} of 

linear functionals, 

inf{f.(Xk): n < k} < sup{f.(Xk): n > k}. 

(7) For each sequence {x.} in E, the member 0 of T belongs to 

cl [O___ l (conv{xi, "",x.} l conv(x.+ l, ""}) ] • 

(8) For each sequence {xn} in E, the member 0 of T belongs to 

c l[d=l( l in{xl , . . . , x .} -conv{x .+l ,  ""})] • 
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(9) There does not exist a positive number O, a sequence {zn} in E, and an 
equicontinuous sequence (g,} of  linear functionals such that 

g~(Zk) > 0 if  n <__ k, g,(Zk) = 0 i f  n > k. 

Proof. Clearly (1) ::> (2), since any T l-space is countably compact if it is compact; 
(2) :~ (3) follows from the fact if x is an accumulation point of {x~}, then the 
inequality in (3) is satisfied for all f.  

To show that (3) ~ (4), let {Kn} be a nested sequence of closed convex sets and 
E 0 K~ be nonempty for each n. Choose x, from E N Kn for each n. If  x in E 
satisfies the inequality in (3) for all f ,  then x ~ 0 K~. For if there is an n such that 
x ~ K,, then there is a continuous linear functional • with ~ ( x ) >  sup {~(y): 
y ~ K,}.This contradicts (3), since then limtI)(x.) < ~(x). 

We shall complete the proof of Theorem i by showing that: 

(4) ~ (5) :,- (6) =~ (9), (4) ~ (7) =~ (8) =~ (9), (9) =~(1). 

To show that (4) =~ (5), let {x.} be a sequence in E, let {fn} be an equicontinuous 
sequence of linear functionals for which all the limits in (5) exist, and use (4) to 
obtain an x that belongs to cll-conv{xn+l,-..}] for all n. Then l imkf . (Xk)=f . (x)  
for all n, and therefore 

lira lira f,,(Xk) = limf,(x). 
n k n 

If  L = limk lim~fn(Xk) and for a positive number 8 we choose K so that 

I L - limf~(x~) I < e if  k > K,  
n 

then I L - l i m . f . ( x )  I _-< e. Therefore L = limJ,(x). The implication (5) =~ (6) is 
easy. For if {x,} is a sequence in E and (f.} is an equicontinuous sequence of linear 
functionals, then lYn(xk)l is bounded and there is a subsequence {(x.',f')} of 
{(x~,f,)} for which all the limits in (5) exist. Then the equality in (5) for {x',} and 
{/~} implies the inequality in (6). To show that (6) => (9), we suppose (9) is false and 
let 0, {z,}, and {g,} be as described in (9). Then 

inf {g~(zk): n < k} > 0 > 0 = sup {g.(Zk): n > k}, 

which contradicts (6). 
The implication (4)~  (7) has a direct proof: If {x,} is a sequence in T, then 

using (4) there is an x thatis a member of cl[conv {x~+l,'"}] for all n. Then for an 
arbitrary neighborhood W of 0, we choose a neighborhood U of 0 such that 
U - U c W. For some n, there is an r in conv {xx, ...,x,} with x - r in U. For this 
(and any other) n, there is an s in conv {x,,+ 1, '"} with x - s in U. Then W contains 
r - s and (7) is verified. The implication (7) ~ (8) is formal. To show that (8) :~ (9), 
we suppose (9) is false and let 0, {z,}, and {g,,} be as described in (9). Let W be a 
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neighborhood of 0 chosen so that [gn(x) [ < 0 for all n if x ~. W. Then for any 
numbers {ai} and any nonnegative numbers {cq} with ~n+l  ~, = 1, we have 

Therefore W N [U~=,  (lin {x l , ' " ,  x,} - cony {x,+ 1, '"})] is empty. 
It remains to show that (9) implies (1). First we use the fact that T can be 

represented as a subspace of a product IIB~ of Banach spaces [12, pp. 46-47]. 
The weak topology of IIB~ is the same as the product topology when each B~ is given 
its weak topology. Since T is complete, T is strongly closed in IIB~. Since T also is 
convex, T is w-closed in IIBa. The canonical projection E~ of E into B~ is bounded 
in B~. If wcl (E~), the weak closure of E~ as a subset of B~, were w-compact for 
each 2, it would follow from theTychonoff theorem that the product II[wcl(E~)] 
is compact in the product topology when each B~ is given its weak topology. This 
would imply that E is w-compact, since E being w-closed in this product follows 
from E being w-closed in T and T being w-closed in IIBa. Thus at least one wcl(E~) 
is not w-compact in the corresponding B~. We can identify this Ba with a subset of a 
space re(A) of bounded functions by letting x be {f~(x)}, where for a suitable 
index set A the set {f,: 0c ~ A} is the set of all linear functionals on B~ with IIf, II < 1. 
Since Ea is bounded, wcl (Ea) is bounded and is contained in a subset of re(A) 
that is a product of compact intervals and therefore is compact in the product 
topology. On B~, the product topology of re(A) is the weak topology of B~. Thus 
wcl(Ea) is not closed in re(A) with the product topology, since wcl(E~) is not 
w-compact. Let w be a member of re(A) that does not belong to wcl(E;.), but 
belongs to the closure of wcl (Ex) using the product topology. Then w also belongs 
to the closure of E~ using the product topology. But w is not in B~, since wcl (Ea) is 
w-closed in B~. Let 

A = d(w, B~) 

in the norm (sup) topology for m(A), and choose 0 with 0 < 0 < A. We shall show 
that it is possible to choose a sequence {(x~,f~,)} inductively so that each f~, is one 
of the members of {f~: ~t e A} and, with the ~ component of w in m(A) denoted by w~: 

(i) xn ~ E~, (iii) f~,,,(Xk) > 0 if n < k, 

(ii) f~°(Xk) = 0 if n > k, (iv) w~, > 0. 

Since II w II > 0 and w is in the product-closure of E;., it follows that w~ is a com- 
ponent of w iff - w~ is a component, that there is a w~, with w~, > 0, and there is 
an xl in Ex with f , ,(xl) > 0. Now suppose that all (Xk,JJ have been chosen for 
k < p in such a way that (i)-(iv) are satisfied for k and n less than p. We shall 
choose % so that w,, > 0 and f~,(xk) = 0 if k < p. To do this, we note first that we 
can define continuous linear funetionals x~ (k < p) and W on B* by letting 
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x[(f) =f(x~) iff~B~, W(kL) = kw~ if ~6A.  

Then it follows from 

+ ,, = sup aix~(f~ ) + W(f~) : ~ 
1 

= sup f~ aix k + w~ : ~ e A = aix k + W ~ A, 

that for any number @ with 0 < @ < A the Helly's condition 

°H I = aixt~ + + < X  Z ° w 
! 

is satisfied for all numbers (a,}, and therefore there is an f i n  B,~ for which 

Ilfll 1, w(f) = , ,  xz(j) = 0 if k < p. 

T h e n f = f ~ .  for some % in A and W(f )  = w,, = @>0 and f~.(Xk) = 0 for k < p .  
We now have w~. > 0 if n < p and it follows from w being in the product-closure 
of Ex in re(A) that there is an xp in re(A) with f~.(x~,) > 0 if n < p. Then (i)-(iv) are 
satisfied for k < p and n < p. Now that we have the sequence {(x,,f~.)}, let g, be 
defined for each n by gn(X) =f~.(Xx), where xx is the component of x in Bx. Also, 
for each x, choose z, in Ex for which x, is the component of z, in B~. Then g,(Zk) > 0 
if n < k, and g,,(z k) = 0 if n > k. The sequence {g,} is equicontinuous, since for any 
e > 0 we have I g,,(x) ] < e if the component of x in Ba has norm less than e. 

There are other sequences of implications among (1)-(9) of Theorem 1 that can be 
proved easily. In particular, it would be easy to shorten the sequences used and 
show that (1) ~ (2) :~ (3) => (4) ~(9) => (1). Also, Theorem 2 could have been 
combined with Theorem 1. This was not done because it seemed best not to 
interrupt the chain of implications used in Theorem 1 and because Theorem 1 
is long enough as it is. The equivalence of (1) and (10) is proved in [18] for E 
bounded, closed and convex. Condition (12) is known [11, Theorem 6, p. 139]. 
Condition (14) was studied first for Banach spaces [14, Theorem 24, p. 581], but its 
equivalence with (1) for locally convex linear topological spaces is now well 
known [12, Theorem 17.12, p. 159]. Condition (16) is an interesting variation 
of the definition of weak sequential completeness in that limg(x,) is required 
to exist only for one g. Condition (17) is known for T a Banach space and K an 
arbitrary w-closed subset of T (see [10, Theorem 1]). 

THEOREM 2. Let T be a complete locally convex linear topological space 
and le E be a bounded w-closed subset of T. Then the following are equivalent 
and each is equivalent to each of(1)-(9) of Theorem 1. 
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(10) Each w-continuous functional on E is bounded. 
(11) Each bounded w-continuous functional on E attains its supremum on E. 
(12) Each continuous linear functional attains its supremum on E. 

(13) The closure of cir (E) is w-compact. 
(14) The closure of cony (E) is w-compact. 

(15) I f  {xn) is a sequence in E and limg(xn) exists for a particular w-continuous 
functional g, then there is an x in E with lira g(xn) = g(x). 

(16) I f  {x~} is a sequence in g and limg(x~) exists for a particular continuous 
linear functional g, then there is an x in E with limg(x~)= g(x). 

(17) I f  K is a closed convex subset o f T  and E and K are disjoint, then 0 is not a 

member of c l [ E -  K].  

Proof. If  ~r is an unbounded w-continuous functional on E, then the set of 
inverse images of the open intervals ( - n, n) is a w-open cover of E that cannot be 
reduced to a finite cover. Thus (1) of Theorem 1 implies (10). The implication 
(10) => (11) is trivial, since if rc is bounded and w-continuous and does not attain 
its supremum on E, then 

1 
~*(x) = sup {~(t): t ~ E} - ~(x) 

defines a w-continuous functional re* that is not bounded on E. The implication 
(11) :~ (12) is formal, since a continuous linear functional is w-continuous. If  each 
continuous linear functional attains its supremum on E, then this also is true for 
cir (E). This follows from the fact that the supremum o f f  on cir (E) is equal to the 
supremum of If[ on E, which follows from 

f ( E a , x , )  < supJf(x,) I if E ] a , ] <  1. 

Thus to prove (12) * (13), we could show that cir(E) is w-compact if each con- 
tinuous linear functional attains its supremum on cir(E). The proof of this is 
difficult and known and will not be given here (see [11, Theorem 6, p. 139]). The 
implications (13) * (14) * (1) follow from the fact that a closed subset of a compact 
set is compact. 

Now the proof of (10) through (14) is complete. To show that (1) ~ (15), we 
assume E is compact and choose an arbitrary sequence {x,,) in E and suppose that 
g is a w-continuous functional for which lira g(x~) exists. Let this limit be L, and 
for each positive integer n let 

/ ') U,, = x : l L - g ( x ) ]  > n " 

Then there is an x in E with g(x) = L, since otherwise the collection of  all such sets 
U~ would be a w-open cover of E that cannot be reduced to a finite cover. The 
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implication (15) ~ (16) is purely formal and it is clear that (16) :~ (12). Thus (15) 
and (16) are proved. 

We shall show now that (1) =~ (17). For each continuous linear functional f and 
number • with sup {f(y): y e K} < ~, let W~ be the w-open set {x: f ( x )  > ~}. For 
any x in E, there is a continuous linear functional f with sup {J(y): y e K} < f (x) .  
Therefore the set of all W~ is a w-open cover of E. If  E is w-compact, this can be 
reduced to a finite cover. Choose e > 0 so that 

tI) - sup {f(y): y ~ K} > 

for each (f, ~) used in defining the finite cover and let U be a neighborhood of 0 
such that for each suchf  we have If(x) l < ~ if x ~ u.  Then it is impossible to have 
x - y  ~ U with x in E and y in K, since we would then have x e W~ for some 
( f ,~ )  and IS(x - y) l < but also f(x)  > • > f ( y )  + ~. Thus 0 is not a member of 
cl [E - K] and (1) ~ (17). To complete the proof of (17), we show that (17) ~ (12). 
This is easy, since if f is a continuous linear functional that does not attain its 
sup on E and this sup is m, then we can let K be {y: f ( y )  = m} and it is easy to 
show that 0 is a member of cl [E - K]. 

2. Convex bounded closed subsets of complete locally convex linear topological 
spaces. Since a convex set is closed iff it is w-closed [12, Theorem 17.1, p. 154] 
we require that E be closed and convex rather than w-closed and convex. Condition 
(19) of Theorem 3 is a generalization of a criterion given by Pt~ik [19] for reflexivity 
of a Banach space, namely, that a Banach space is reflexive iff for each biorthogonal 
bounded sequence {(x~,fn)} the sequence {x I + - . .  + xn} is unbounded. If  (20) is 
modified by replacing O H,, by E O ( O Hn), then the equivalence of (1) and (20) 
becomes another theorem of Pt~k [18]. Clearly the modified (20) can be sand- 
wiched between (4) and (20). Condition (22) with E the unit ball has been used as a 
characterization for reflexivity of a Banach space [16, Theorem 2, p. 1250]. 
Condition (23) is a strengthened form of (9), valid for closed convex sets. 

THEOREM 3. Let T be a complete locally convex linear topological space and 
let E be a convex bounded closed subset of T. Then the following are equivalent 
and each is equivalent to each of (1)-(17) of Theorems 1 and 2. 

(18) I f  {(x~,f,)} is a biorthogonal sequence for which some subsequence of {f~} 
is equicontinuous, then there is at least one value of n for which xl  + "" + x~ is 

not in E. 
(19) I f  {(xn,f~)} is a biorthogonal sequence for which {x~} is bounded and {f,,} is 

equicontinuous, then there is at least one value of n for which xl  + ' "  + Xn is not 

in E. 
(20) I f  {Hn} is a sequence of closed hyperplanes and E N H1 fi "" fi Hn is 

nonempty for each n, then N Hn is nonempty. 
(21) For each sequence {x~} in E, the member 0 of T belongs to 
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cl U ( l i n { x , , . . . , x , } -  ttat {x,+ l, ... }) . 
n = l  

(22) Each affine continuous map of a nonempty, closed convex subset of E 
into itself has a fixed point. 

(23) There does not exist a positive number O, a sequence {zn} in E, and an 
equicontinuous sequence {gn} of linear functionals such that 

g,(zk) = 0 if n < k, g,(Zk) = 0 if n > k. 

Proof.  Clearly (18):~ (19). Let us prove that (5)=~ (18). Suppose (18) is false 
and {(x,,f,)} is as described in (18) with {fp.} an equicontinuous subsequence of  
{f,}, but  that  x l  + . . .  + x ,  is in E for all n. Then (5) is false, since 

lim l imfv . (x  I + .-. + Xk) = 1 ¢ 0 = lim lim fp.(Xl + ... + xk). 
n k k n 

Now note that (20) is implied formally by (4) of  Theorem 1, and (21) is implied 
by (8). Also, (22) is implied by (1). To see this, we use the fact that a continuous 

map o f  a convex compact  subset of  a locally convex linear topological space 
into itself has a fixed point  [2, Theorem 1, p. 82]. Since T is locally convex with 
the weak topology,  to use (1) we need only know that a continuous affine map rc 
of  a closed convex set K into itself is w-continuous. This can be shown easily, 
since if x is in K and f is a continuous linear functional,  then the inverse image 

under rc o f  {t: f ( t )  > f  [Tt(x)] + e} is a closed convex subset o f  K that can be sepa- 
rated strongly from x by a hyperplane. 

We shall show next that each of(19),  (20), (21) and (22) implies (23), and that (23) 
implies (9) of  Theorem 1. Suppose first that (23) is false and there is a positive 
number  0, a sequence {z,} in E, and an equicontinuous sequence {g,,} of  linear 
functionals with gn(Zk)-----0 if n < k and gn(Zk)----0 if  n > k. Let x 1 = z 1 and 
x~ = z n - z ~ _  1 if n >  1. Then the sequence {x,,} is bounded and xl  + "" + x:, 
equals z n and therefore belongs to E for all n. Also, g~(x~) = 0 and g,,(Xk) = 0 ff 
n v~ k, so the sequence {x,, g~/O} is biorthogonal.  Thus (19) is false. Now let go(x) 
be defined as lim g,,(x) for  all x in T for which this limit exists and then extended 
so as to be continuous on all of  T [12, Theorem 14.1 (iii), p. 118]. Let Ho be the 
null set of  go and for each n > 0 let H~ be the set of  all x in T with g,,(x) = O. 
Then z~ belongs to Ho tq H1 N ... A H~ for all n, but  if x belongs to all H,,, then 

gn(x) = 0 for all n > 0 and therefore go(x) = 0 and x ~ Ho. Thus (20) is false. Now 

suppose that  W is a neighborhood of  zero such that Ig,(x) I < 0 for all n if x ~ W. 
Also suppose that u - v is in W and 

u =  ~ aizi, v =  ~, bizi, ~. b i = l .  
1 n + l  n + l  

Then g~+l(U - v) = gn+x( - v) = - 0  and u -  v ¢ W, so we conclude that (21) is 
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false. To contradict (22), we first show that if x is in cl[conv {z.}] then 
x = ~ o ~ . z .  with each ~n nonnegative and ~ .  = 1. For each x in cl[conv{z.}], 
we define ~. for each n to be [g,,(x) - g.+l(x)]/O. Since gl(w) = 0 if w= ~ / ~ . z .  
with Y,/~. = 1, and all of [ g l ( x )  - g~(w)] and I~. - /~ .  [ for n > 0 can be made 
small by a suitable choice of w with each/~,, nonnegative, it follows that each ~. is 
nonnegative, ~ .  < 1 and Y.~a,z, is convergent, and 0 = g l ( x )  = 0- ~ o  . 
Thus ~ .  = 1 and it follows that x = ~ . z . .  Now let 

O~nZ n ~ ~ O~nZn+ 1. 
1 1 

Clearly rc has no fixed points. To show that ~ is continuous on cl [conv {z.}], 
choose a particular sequence {~,,} with each ~. nonnegative and ~ = 1. For an 
arbitrary neighborhood W of zero, choose a positive number 6 and a circled 
neighborhood Wo of zero such that 

Wo + Wo c W, a"  cl [conv {z.)] = W o if I a l < fi" 

By approximating a. 's in a finite set whose sum is nearly one, we can see that there 
is a neighborhood U of zero such that if ~fl .  = 1 and each ft. is nonnegative, then 
El  a . -  fl,,I < fi if ~ ( a .  - fln)Z.~ U. Then if ~-'(an -- fl.)Z.~ U, we can write this 
sum as the sum of those terms with positive coefficients plus the sum of those terms 
with negative coefficients and obtain 

E(~ . - /~ . )z .+ l  ~ Wo + W0 = W. 

We must now show that (23) =~ (9). To do this, we shall assume that E is convex 
and (9) is false and then show that if {z.} is a sequence in E and {g.} is an equi- 
continuous sequence of linear functionals with g.(zk) > 0 if n <= k and g.(zk) = 0 
if n > k, then there is a sequence {u.} in E and a sequence {h.} such that h.(uk)=½0 
if n < k, hn(u,) = 0"if n > k, and each h. is equal to ~.gp for some p and some 
positive number ~ .  < 1. This can be done inductively as follows. Let li_m gx(zk) = 0'. 
If  gl(Zk)= 0' for all k, let ul = zl and h i =  (O/20')gl. If  gl(zp)~ 0', choose a 
subsequence {zp~} of {zk} with Pk > P and [ 0 ' -  gi(zp~)[ small enough for each k 
that there is a number 0" near 0' and between 0' and gl(zp) such that if z~ is chosen 

for each k so that 

z~ = aZp + ( 1 -  a)Zp~ with 0 < a < 1 and gl(z~) = 0", 

then a is small enough that 

gp.(z~) > to  if n <= k. 

Now the new sequence {z~ } and the corresponding sequence {g~} of linear func- 
tionals from {g.} have all the original properties and in addition g~(z~)= O" 
for all k. Now let ul = z~ and hi = (O/20")g~. We can then work with the new 
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sequences {Zk 1 : k > 1) and {gkl: k > 1) in exactly the same way to define u2 and h2, 
except that in the preceding inequality we replace 3/4 by 5/8. Continuing in this way, 
we get the desired sequences (u,) and {h,}. 

Several separation criteria are given in Theorems 4 and 5. These are closely 
related to (I7) of  Theorem 2. A condition similar to (25) is known to be a charac- 
terization of w-compactness for closed convex subsets of  a Banach space (see 
[10, Theorem 2]). Condition (26) is closely related to a theorem that follows from 
results of Tukey [21] and Klee [13, p. 881]: A Banach space is reflexive iff each 
pair of disjoint bounded closed convex subsets can be separated by a hyperplane. 

THEOREM 4. Let T be a complete locally convex linear topological space and 
let E be a convex bounded closed subset of T. Then the following are equivalent 
and each is equivalent to each of(1)-(23) of the preceding theorems. 

(24) I f  closed convex subsets X and Y of E are disjoint, then 0 is not a member 
of cl [X - e] .  

(25) I f  closed convex subsets X and Y of E are disjoint, then there is a con- 
tinuous linear functional f such that 

sup {f(x): x ~ X }  < inf{f(y):  y ~  Y}. 

Proofi Since a closed convex set is w-closed, it follows from (1) that X is w-com- 
pact. Then (24) follows from the equivalence of  (1)and (17)when E is replaced 
by X. We shall show that (24)=~ (23). Suppose that (23) is false and therefore 
for some positive number 0 there is a sequence {z.} in E and an equicontinuous 
sequence {g.} of linear functionals such that g.(zk) = 0 if n < k and g.(zk) = 0 if n > k. 
As for the set { ]~a.z.} discussed in the proof  of  the contradiction of (22) in the 
proof of Theorem 3, the following convex subsets of E are closed: 

X = a. ~ ' z 2 . +  1 + ~ ' z 2 .  , 
x n + 2  

Y = an + z2, 1 -n-T-2 Z2n--I ~ ' ~  ' 

where each ~, is nonnegative and ] ~ .  = 1. Then X fl Y is empty, but 0 is a 
member of el [X - Y]. 

The equivalence of (24) and (25) follows from the theorem on strong separation 
stated in the introduction. 

THEOREM 5. Let T be a complete locally convex linear topological space and 
let E be a convex bounded closed subset of T that contains O. Then the following 
is equivalent to each of (1)-(25) of the preceding theorems. 

(26) I f  closed convex subsets X and Y of E are disjoint, then there is a continuous 
linear functional f and a nonzero number • such that f ( x )  < ¢p if x e X  and 

f (y) > ¢p if y ~ Y. 
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Proof. Clearly (25)=~ (26). The proof that (26) implies (23) is similar to the 
part of the proof of Theorem 4 in which we showed that (24) =~ (23), only now we 
let 

X = ~z n + 1 ~ z2"+t ~ z2" ' 

{ 1)}  
Y 

where each e. is nonnegative and ½ < ~ e .  < 1. Again X and Y are disjoint. 
Suppose there is a continuous linear functional f and a nonzero number 4 such 
tha t f (x)  < 4 if x e X andf (y )  > 4 if y e Y. Then for all n we have 

z2._ t + ~-~--~ z2. > 4 ,  f -~Z2n_l"~-~---'~Z2n ~f~. 

f [ n + l 1 ) [ _ f ( _~__~2 z 2, _ l + _~_~  z 2. ) ] > 2 4 - U 4 - z  Z 2,, _ + - f f -4 -2  z , .  + 4 " 2 

and f[(z=._ a - Za.)/(n + 2)] > 4 for all n, so that 4 < 0. Similarly, 

l (n  ) (n+l 
<__4, f 

andf [ (z2 .  - z2.- O/(n + 2)] < 4 for all n, so that 4 > O. Since 4 # O, we conclude 
that (26) is false if (23) is false. 

3. Bounded w-closed subsets of  Banaeh spaces. The equivalence of condition 
(27) of Theorem 6 and (1) of Theorem 1 is the classic Eberlein theorem 13]. As will 
be clear from the proof, if we had wished only to obtain the Eberlein theorem 
we could easily have proved (1) ~ (2) =~ (3) ~(27) ~ (9) ~ (1). Condition (28) 
is known [10, Theorem 1, p. 204] and is included here largely because of its 
relation to (12) and to conditions for reflexivity given in Theorem 9. 

THEOREM 6. Let E be a bounded w-closed subset of a Banach space. Then the 
following are equivalent and each is equivalent to each of (1)-(17) of Theorems 
1 and 2. 

(27) E is ws-compact. 
(28) I f  S is a w-closed set and E f~ S is empty, then d(E, S) > O. 

Proof. First we assume (3) and let {x,} be an arbitrary sequence in E. Then there 
is an x in E such that 

l imf(x,) < f ( x )  < l imf(x,)  
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for all continuous linear functionals f.  Clearly x is in cl [cony {xn}]. Let {gk} be a 
sequence that is total over the closure of conv{xn}, and let {~} be a subsequence 
of {x~} for which lim, gk(~n) exists for each k. Then 

limg k (~,) = gk(X) for all k. 
n 

Also, x is a weak limit of {~}, since otherwise there would be a continuous linear 
functional g for which lim g(~,) does not exist or does not equal g(x). Then we 
could choose a subsequence {t/,,} of {4 } for which limg(r/n) exists and is not 
g(x), and choose y for which 

lim f(r/~) < f (y)  < lim f(r/~) 

for all continuous linear functionals f.  Then y is in cl [conv {~/~}]. But also, 
lim, gk(rln) = gk(X) for all k, lim~ gk(~/,) = gk(Y), and gk(X -- y) = 0 for all i. This is 
impossible, since {gk} is total over cl [conv{x,}] and x ~ y follows from the 
two true statements: lim g(r/n) ~ g(x), and lim g(~/,) = g(y). 

To show that (27)=~ (9), we let {z~} be an arbitrary sequence in E and assume 
(27) so that some subsequence {(,} of {z,} has a weak limit w. Then w is in 
cl [cony {z~+l, "" }] for all n, since otherwise there would be an n and a 
continuous linear functional f with sup {f(Zk): k >  n + l } <  f ( w ) a n d  thus 
limf((n) ~ f(w). Therefore for {z,} there can be no positive 0 and bounded sequence 
{gn} of linear functionals such as described in (9), since then g~(Zk) > 0 for n < k 
would imply g~(w) > 0 for all n, and g~(Zk) = 0 if n > k would imply g~(w) = O. 

Condition (28) is an easy consequence of (27), since if lim [] x~ - y~ [] = 0 with 
x, in E and yn in S, then a weak limit of a subsequence of {x,} must belong both 
to E and S. Also, (28) =~ (12). For i f f  is a continuous linear functional that does 
not attain its sup on E and m is the sup o f f  on E, then the set of all x with f (x)  = m 
is w-closed and at zero distance from E. 

4. Reflexivity of Banach spaces. Theorem 7 gives many characterizations of 
reflexivity for Banach spaces, since each of (1)-(28) can be used as a characteri- 
zation of reflexivity if E is taken to be the unit ball. The classical theorem that a 
Banach space is reflexive iff its unit ball is ws-compact is part of Theorem 7. 
The first step toward this theorem is given in Banach's book [1, Theorem 13, p.189] 
in which it is shown that if B is separable and the unit ball is ws-compact, then 
B is reflexive. In [5], it was proved that the unit ball of B is ws-compact if B is 
reflexive. The theorem was completed much later by Eberlein [3]. 

The proof given here that (31) =~ (29) was suggested by M. M. Day. A similar 
argument was used by Pthk to prove theorems analogous to (19) (see [19, p.321]). 
A weaker form of (31) is known for which g,(zk) =0 is replaced by g~(zk) > 0 
(see [9, Theorem 1, p. 206]). Condition (31) can also be stated in the following form 
(see [9, Corollary 1, p. 208]): It is false that for each number 0 < 1 it is possible 
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to embed B in a space of bounded functions defined on a set A in such a way that 
A contains the positive integers and, for each positive integer n, there is a member 

z,, of B with 
z.=(O,O,'",O,O,O,'";{tna}), 

where the first n components of z n all are 0 and I t~l < a for all a in A. 

THEOREM 7. For a Banach space B, the following are equivalent and each is 
equivalent to each of (1)-(28) of the preceding theorems with E the unit ball. 

(29) B is reflexive. 
(30) It is false that for some positive number ~ there is a bounded sequence 

{z.} such that 

d(conv {zl, . . . ,z,}, cony {z,,+l, ...}) > for  all n. 

(31) It is false that for each number 0 < 1 there are sequences {Zn} and {g.} 
with I[zn[[ =< 1, I[gn[] ~ 1 ,  and 

gn(Zk) = 0 if n < k, g,(Zk) = 0 if n > k. 

Proof. With E the unit sphere of B, it is clear that (30) is equivalent to (7). 
Therefore it is sufficient to show that (29) =:- (30) =~ (31) =~ (29). 

To show that (29) ~- (30), suppose that (30) is false and that {z.} is a bounded 
sequence with 

d(conv {zl, ...,z,}, conv (z,+ 1, ...}) > a for all n. 

Then for any x in B, there is a p such that d(x, conv{zp+l, ...}) is positive and 
therefore there is an f in B* with sup {f(z,): n > p} < f (x) .  Let F be the member 
of B** described in the introductory lemma, so that 

limf(z,,) < F ( f )  < l imf(z,)  if f ~  B*. 

Then B is not reflexive, since if there is an x with F( f )  = f ( x )  for all f i n  B*, then 

limf(z.)  < f ( x )  < limf(z.) if f e  B*, 

and this contradicts the fact that there is an integer p and an f i n  B* with sup {f(z.): 
n > p} < f (x) .  

Now suppose that (31) is false. Choose a positive number 0 < 1 and let {z.} and 
{g.} be as described in (31). Then (30) is contradicted by {z.} with cr any positive 
number less than 0, since 

To prove that (31) =~ (29), we suppose that B is not reflexive and let B c denote 
the canonical image of B in B**. Also, for each x in B let x c denote the canonical 
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image of  x in B**. Let 0 satisfy 0 < 0 < 1 and F be a member of B** for which 
II F II < i and d(F, B ~) > 0. The proof will be complete if we show that it is possible 
to choose the sequence {(zn, g,)} inductively so that 

(a) I1Zn ]1 < 1 and I1 g, II ~ 1, 
(b) F(g,) = 0 for all n, 
(c) g~(Zk) = 0 if n > k, 
(d) g,(zk) = 0 if n < k. 

The first step is to note that since II F It > 0, there exists g~ with II g '  [l z 1 and 
F(gl) = 0. Then II el II > 0 and there exists z 1 with [[ zl II z i and gl(zl) = 0. Now 
suppose that (Zk, gk) has been chosen for k < p so that (a)-(d) are satisfied for n and 
k less than p. Then we choose gp so that II g, II z 1, F(g~)=O, and Z~k(gp)=gp(Zk)=O 
for k < p. This is possible, since the following Helly's condition is satisfied: 

°1"-1 I 0 < d(F, Bc) ~ aix7 + F for all numbers {ai}, 
1 

where O/d(F, B c) < 1. Now we must choose Zp so that 
if n < p. To show this is possible, we use the fact that 
condition: 

I zp II 1 and gn(Zp) = 0 
F t1 < 1 and the Hetly's 

[ ~ aiO ] = ] ~ a,F(g,) = F (  ~ a~g, ) t < I{ F [{ ~a~g,]]. 

The following theorem gives several criteria for reflexivity that are closely 
related and might be called "flatness criteria" for the unit ball. These are closely 
related to conditions (7), (8), (21) and (30). 

Condition (32) has long been known. It is the same as Lemma 1 of [8]. It is 
closely related to a necessary condition for reflexivity given by Milman and Milman 
[16, Corollary, p. 1252] which can be stated in the following form: If  B is non- 
reflexive, then for any a < 1 and any n there is a sequence {zl, ..., zn} such that 
a < II u II < 1 if u ~ conv {Zk} and, for all k < n, 

tr < d (conv {z 1,..., Zk}, cony {z k+l,..., z,}) < 1. 

To change the Milman-Milman condition and obtain the necessary and sufficient 
condition (32), one can replace the finite sequence {zl, ...,z,} by an infinite 
sequence and replace the 1 in the last inequality by 2 (which is equivalent to 
discarding it altogether). 

Condition (35) is almost equivalent to the theorem of Pdczyfiski that a Banach 
space is nonreflexive iff some nonreflexive subspace has a basis [17, Theorem 1, 
p. 372], since the inequality being satisfied for some positive number ½a is a 
necessary and sufficient condition for {z,} to be a basis for its closed linear span 
(see [1, p . l l l ] ,  and [7]). 
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Condition (35) also is related closely to Corollary 2 of  [23], since a sequence is 
a "basic sequence of type 1+" iff it satisfies the conditions in (35) with I[ u II = 1 
replaced by II u II = M for some positive number M. 

THEOREM 8. For a Banach space, the following are equivalent and each is 
equivalent to each of(I)-(31) of the preceding theorems with E the unit ball. 

(32) It is false that for each number tr < 1 there is a sequence {z,} such that 

< Ilull-<- 1 i fueconv{z .}  and, for all n, 

d(conv {zD ..., z,}, conv {z.+ 1, ,..}) > tr. 

(33) It is false that for each number a < 1 there is a sequence {z.} such that 

< II u I! ---- 1 if u e conv {z.} and, for all n, 

d(lin {zl ,  . . . ,  z,},  flat {z,+ ~,...}) > a. 

(34) It is false that for each number a < 1 there is a sequence {z.} such that 
a < H u l[ < 1 if u e conv {z.} and, for all n, 

d(flat {zl, "", z,,}, 

(35) It is false that for each number 
< Ilull 1 i f ueconv{z . )and ,  foral l  

n÷p 

t 

lin {z.+ 1, "", }) > ½tr. 

< 1 there is a sequence {z,,} such that 
n < p and all numbers {a,}. 

½ff ~ aizi ! • 
1 

Proof. Clearly (30) implies (32), (33), (34) and (35). Also, (32) =~ (33). We shall 
complete the proof  by showing that each of (33) and (34) implies (31) and that 
(35) implies (29). 

Suppose first that (31) is false and for 0 < 1 let {z,} and {g,} be as described 
in (31). We contradict (33) by using the first of the equalities 

g"+l(  ~ a ' z ' -  ~" b~z') = - 0 "  ]~ .+1 .+, 

! n + !  1 n + l  

with ~.+x b~ = 1 and 0 > a. Then (34) is contradicted by letting ~a~ = 1 and 
noting that it is impossible to have both 01 ~.+1 b, I and 011 - ~.÷1 b, I less than 
a i f 0 > a .  

To prove that (35) * (29), we suppose B is not reflexive and denote by B c the 
canonical image of B in B**. For A between 0 and 1, let F be a member of B** 
for which IlFll < 1 and d(F,B ~) > A. The proof will consist of showing in- 
ductively that there is a linear functional • with domain B and sequences {z,} and 
{H,} such that II • I[ = 1, F(q~) = A, and: 

(i) II z. [l -<- 1 and , ( z . )  = A for all n. 
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(ii) {H.} is an increasing sequence of finite sets of linear functionals with 
domains B and norms less than 2/A, 

(iii) F(h) = h(zp) = 0 if h ~ H.  and n < p, 
(iv) If  zelin{zx,... ,z.}, there is an h in H.  with [ h(z)[ _>_ All ztl. 

First choose • so that I1 ~ 1[ = 1 and V(q3) = A. Now suppose that {z a, ...,zp} and 
{Hx, ..., Hp} have been chosen to satisfy (i)-(iv) when n < p, where p may be zero. 
Then z,+l  must be chosen so that ][ z .+l  1[ < 1, ~ (zp+l )=  A, and h(z.+ 0 = 0 
if h ~ H.  (if p = 0, then H p is to be the empty set). This is possible, since II F l[ < 1 
and the Helly's condition A < II F 11 [1 h + ¢ [I follows from 

Al[Fl[llh+-~ll-- [ I v l l l [ h ÷ ~ l [  if h~H e. A< [F(h+~) l - -  

Now let Gp be a finite set of linear functionals with unit norms and domains 
lin{zl,. . . ,zp} which contains suitable linear functionals that for each z in 
lin {zl, "-', zp} there is a g in G~ with I g(z) I ~ A I! z II, xf g ~ ae and z: is the cano- 
nical image of z~ in B**, then for all numbers {a~} we have 

] f~ ] g (  ~. a,z,) [1 ~ a,z,[I e [ aiz~(g ) = aig(zi) = < = ~ aiz~ 
1 1 1 1 1 

P 

< F +  Y~ aizi + F . 
1 

P c Since d(F,B c) > A and Ilfll < ~, we have AIIF]I < IIF + :Cla,z, ll and therefore 

l fZ a'zT'g) l < ( ' +~ F ÷ ~ aiz7 

This is a Helly's condition that gives the existence of an h in B* with 1[ h 1[ < 2/A, 
F(h) = 0, and z~(h) = z~(g), or h(z~) = g(zi), for 1 < i _ p. Then h is an extension 
of g to B. Let each member of G e be extended in this way and then let H e be the 
union of H e_ 1 and all such extensions of members of G e. Now that we have 
sequences {z.} and {H.} that satisfy (i)-(iv), it follows from (i) that ~(u) = A and 
II u II > A if u ~conv {z.}, and it follows from (iv) that for any sum ~ aiz i there is 
an h in H.  such that 

Using 11 h II < 2/A and ( i i i) ,  w e  then have 

~e  A ~x aizi) A h ~ aizi =---2 1 

This contradicts (35), since for any a < 1 we can choose A so that tr < A 2. 
All of the conditions in Theorem 9 are known; for (36) and (37) see [10, Theo- 

rems 3 and 4]; (38) is a consequence of results of Klee [13, p. 881] and Tukey [21]. 
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Condition (36) is closely related to (17), (24) and (28). Conditions (37) and (38) are 

closely related to (25) and (26). 

TrmOREM 9. For a Banach space, the fo l lowing are equivalent and each is 

equivalent  to each of (1)-(35) of  the preceding theorems with E the unit  ball. 

(36) I f  w-closed subsets X and Y are disjoint and one set is bounded, then 

d(X, Y) > O. 
(37) I f  closed convex subsets X and Y are disjoint and one set is bounded, then 

there is a continuous linear funct ional  f such that 

sup {f(x):  x e X }  < inf{f(y) :  y ~  Y}. 

(38) I f  closed bounded convex subsets X and Y are disjoint, then there is a 

continuous linear funct ional  f and a nonzero number  • such that f ( x )  < ¢P i f  

x e X and f (y) >= • i f  y e Y. 

Proof. Assuming (1) is true with E the unit ball, the bounded set in (36) is 

w-compact and it then follows f rom (28) that d(X,  Y) > 0. I f  X and Y also are 
convex and d(X ,  Y ) >  e, then it follows from the theorem on strong separation 

stated in the introduction that (36) => (37). Clearly (37) :~ (38) and (38) is equivalent 

to (26) if E is the unit ball. 
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